
Idea of handling short-lived network failures using
LOLS and loop free convergence using FCFR

Rama Gaikwad1 and S. P. Pingat 2

1 PG Fellow, Department of Computer Engineering, S.K.N. College of Engineering , Pune,Maharashtra, India.
2 Assistant Professor, Department of Computer Engineering, S.K.N. College of Engineering, Pune,Maharashtra, India.

Abstract. The short-lived failures are reasonably common in
IP networks, there are many ways with which local rerouting
can be provided for high availability but most of them are for
single link failure. Here, we are suggesting a Localized On-
demand Link State (LOLS) routing to safeguard the
forwarding continuity even with multiple failures limiting the
propagation of failure information to just a few hops. LOLS
cannot guarantee loop-free forwarding during route
convergence and this is the reason why we are working on
integrating Fast Convergence Fast Reroute (FCFR) technique
with LOLS to ensure loop free rerouting and convergence
even with multiple failures. Fast Convergence with Fast
Reroute (FCFR), which uses a fast reroute scheme such as
Not-Via and desires just one additional bit in the packet
header with much less per-packet overhead. Integrating
LOLS with FCFR is going to hold the quality of LOLS of loop
free forwarding and overcome drawback of LOLS by
ensuring loop free convergence.

Keywords: Fast Reroute, Failure Resilience, Local Rerouting.

1. INTRODUCTION

The internet plays an important role in our lives these days.
Providing nonstop service availability even with
momentary failures is the foremost challenge for the
service providers. Unfortunately, service disturbances
occur even in well coped networks due to either link or
node failure or both. To upkeep evolving time-sensitive
requests in today’s Internet, these networks need to endure
failures with minimal service disruption. For example, a
disruption time of longer than 50 ms is considered
intolerable for mission-critical applications [1].Hence, it is
important to formulate schemes that protect the network
against not only single failures but also multiple
independent failures.
The essential concept behind LOLS(Localized On-demand
Link State Routing) is to have packets transmit a blacklist
of degraded links come across along the path that are to be
avoided in order to ensure loop-free forwarding. The
desirability of LOLS is that a packet’s blacklist is reset as
soon as it makes forward progress towards the destination,
limiting the spread of failure information to just a few hops.
LOLS considers a link as degraded if its current state (say
“down”) is worse than its globally advertised state (say
“up”). Under LOLS, each packet carries a blacklist (a
minimal set of degraded links come across along its path),
and the next hop is determined by excluding the blacklisted
links [2]. A packet’s blacklist is initially void and remains
blank when there is no disagreement between the current
and the advertised states of links along its path. But when a
packet reaches at a node with a tainted link neighboring to

its next hop, that link is added to the packet’s blacklist. The
packet is then advanced to an alternate next hop.
The packet’s blacklist is retune to empty when the next hop
makes forward progress, i.e., the next hop has a smaller
path to the destination than any of the nodes navigated by
the packet. With these simple steps, LOLS propagates the
state of degraded links only when essential, and as far as
necessary, and confirms loop-free delivery to all local
destinations.
LOLS cannot promise loop-free forwarding during route
convergence[2]. Traditional routing schemes such as OSPF
activate link state advertisements in reaction to a
modification in topology, and cause network-wide
computation of routing tables. Such a global rerouting
suffers some delay before traffic forwarding can resume on
another paths. During this convergence delay, routers may
have uneven sights of the network, resulting in forwarding
or routing loops and dropping of packets [4].
In order to avoid routing loops during this intermediate
period, other authors have suggested schemes such as
ordered updates [5] and SafeGaurd technique [6].But
ordered updates have extends the convergence period and
SafeGaurd technique add multiple bytes in the header. Fast
Convergence Fast Reroute (FCFR) is a technique which
uses such as Not-Via to create alternate path during the
convergence process. This is why we are working on
integrating Fast Convergence Fast Reroute (FCFR)
technique with LOLS to ensure loop free rerouting and
convergence even with multiple failures. Fast Convergence
with Fast Reroute (FCFR), which employs a fast reroute
scheme such as Not-Via and needs just one additional bit in
the packet header with much less per-packet overhead [3].
Integrating LOLS with FCFR is going to retain the quality
of LOLS of loop free forwarding and overcome drawback
by ensuring loop free convergence too. We provide the
details of this integration in next sections. The rest of the
paper is structured as follows. Section II presents LOLS
approach for handling multilink failures and Section III
throws light on how FCFR guarantees loop free
convergence. In Section IV, we will brief on the idea of
integrating LOLS with FCFR and finally in Section V, we
conclude the paper.

2. RELATED WORK
Abundant methods have been projected in the past to make
networks more robust to failures. We classify them into
patterns that guard against single or linked failures and
those that can deal with multiple independent letdowns.
Also, some of them try to decrease the routing overhead by

Rama Gaikwad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2099-2102

www.ijcsit.com 2099

controlling the link state updates. We concisely describe a
few systems fitting to each of these groups in the following
section.
Single or Correlated Failures: The Not-via
method[7]locally redirects a packet around a recognized
failure by encapsulating the packet to an address that tacitly
identifies the failed network factor to be avoided. The
above systems offer flexibility against single or linked
failures but are not intended to improve from multiple
unconnected failures.
Multiple Independent Failures: Convergence-free routing
using Failure Carrying Packets (FCP) [8] can recover from
a random quantity of failures. FCP also carries data about
the down links in the data packet and intermediary routers
ignore those links while calculating the next hop. But,
contrasting our system, the failure information under FCP
is carried all the way to the endpoint, which is
objectionable. Packet Re-cycling (PR) [9] is a method that
also objects to decrease the number of bits needed to be
carried in a packet header to guarantee effective rerouting.
PR takes benefit of cellular graph embedding to redirect
packets that would otherwise be dropped in circumstance of
failures. It needs only in the order of log2(D) bits in the
header to shield all non- detaching failure arrangements,
here D is the diameter of the network. While the small
header overhead is noteworthy, packets under PR take
longer way around than LOLS.

3. PROPOSED SYSTEM
3.1 Problem Description:
Using LOLS, the multiple link failure can be handled. This
makes sure that the data is delivered to destination even if
the link is failed. Figure 1 shows the detailed architecture
of our system.
Moreover, it does not transmit the facts of link failure to all
the destinations if the link is failed for the duration less
than the threshold.
The problem definition is to handling multiple link failures
in IP network using Localized On-demand Link state
routing while, to avoid loops at the time of convergence,
integrate it with FCFR technique. The problem with the

LOLS is that, it does not promise loop free forwarding at
the time of convergence. The issue is handled using
integrating the same with fast convergence and fast reroute
technique, employs a fast reroute scheme such as Not-Via
and desires just one extra bit in the packet header with far
less per-packet overhead.
The flow of the activities to be performed is shown in the
figure 2. Here we will be creating nodes using JAVA
programming and enable user of the system to send and
receive the packets. To perform the forwarding of the
packets, we shall apply greedy forwarding algorithm.
While forwarding the packets using greedy forwarding, if
we will come across the down link, we will apply the
blacklist based forwarding algorithm.

Figure 2: Flow of activities to be performed

Figure 1: System Architecture

Rama Gaikwad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2099-2102

www.ijcsit.com 2100

3.2 Greedy Forwarding algorithm:
We need to select a succeeding hop such thatthe packet
does not get trapped in a forwarding loop. Anapproach
toassure loop-freedom is to apply greedy forwarding that
forwards the packet along a route with reducing cost to the
destination, i.e., every hop makes forward progress in the
direction ofthe destination. It is crucial that the path cost is
determinedregularly at all nodes based on the broadcasted
topology.
A packet is usually advanced in greedy mode to a
succeeding hop along the path with reducing cost (w.r.t. the
announced topology) to the endpoint. When a packet come
across a dead-end(whose cost to the destination is lesser
than any of the potential subsequent hops) in greedy mode,
instead of dropping the packet, it is advanced in recovery
mode.
In recovery mode, packets carry a blacklist, which is a set
of degraded links come across the route. A packet’s
subsequent hop is selected along a path that does not
contain blacklisted links. The forwarding of a packet is
swapped back to greedy mode, i.e., the blacklist is retuned
to empty, when it reaches at a node with lower cost (w.r.t.
the announced topology) to the destination than the node at
which it moved in the recovery mode. Thus, LOLS
successfully transmits link state on demand, and only to as
several nodes as essential.
Algorithm:
Let d be the destination of the packet, j is the adjacent next
feasible hop, i is the source node from which the route is to
be calculated.
1. If the cost of path from j to d is less than cost of path

from i to d then, j is the next feasible hop for which
node i has shortest path to destination d.

2. If no feasible hop is present then algorithm returns
NULL and the packet is rejected.

We want to point out that this algorithm is a variation of
standard greedy forwarding as it does not continuously
select a next hop with maximum forward advancement.
Instead, it chooses a next hop such that it aggregates to
shortest path forwarding when there are no down links,
which is surely a desired.

3.3 Blacklist based forwarding algorithm:
In Localized On-demand Link State routing, every packet p
carries a blacklist p.blist with it while traveling through the
network in its header, and packet is to destination or next
hops based on both p.dest and p.blist. The blist that is
blacklist is initialized to NULL at the source and it is
increases or shrinks as and when required during the whole
forwarding process.
Algorithm:
1. Find the next hop with smallest path cost and which

does not have links present in packet’s blacklist.
2. If the links to the neighbor are down or degraded, add

these links in the packet’s blacklist.
3. Repeat the steps 1 and 2 until either we find the next

hop which forwards the packet to the next hop and
resets the packet’s blacklist, or there is no feasible next
hop this means that the destination is unreachable and
the packet must be dropped.

There are rules present for updating the packets blacklist
p.blist at node i, the rules are briefed here.
1. The link from i to j is added to blacklist if

a. Link is degraded
b. No feasible next hop is present without the link i

to j
c. If the link i to j had not been down, then this link

could have been the shortest path.
2. The blacklist is retuned to NULL when

a. The feasible next of is present
b. The cost from j to destination is less than that of

any other node traversed by packet p.

3.4 Integrating with FCFR
We suggest fast convergence with fast reroute
(FCFR),which uses an existing technique such as NotVia to
generate alternate routing during the convergence
procedure. Each router preserves two duplicates of their
forwarding information table. The before change(bc)
forwarding table relates to the fast reroute topology and the
after convergence (ac) table is produced once the router has
calculated the restructured topology. Each packet carries a
bit that specifies its forwarding mode, i.e., which of these
two tables are used for forwarding it that particular bit.
The outcome is that routers which have not yet calculated
their altered table scan remain to use the bc tables in order
to send packets during the convergence procedure. Routers
that have a view of the new topology initiate to forward
packets with the ac table. However, if the packets reach to a
router with only the bc table, the router will revert to using
that table. Once a packet has been sent using a bc
forwarding table, the packet cannot return using a route
from the ac topology.
This promises that packets which originate at an updated
router will every time get transported, either along an ac
route, or a grouping of an ac route and the bc route. Packets
initiating at not yet updated routers follow the bc path all
the way to the destination. Thus, FCFR guarantees loop-
freedom while advancing packets along the ideal routes as
soon as possible.
During the forwarding phase the above mentioned
algorithms will be used, while during convergence period,
the forwarding shall happen according to FCFR technique
to ensure loop-free convergence too.

3.5 Mathematical Model
U is main set of users like u1, u2, u3….
 U = {u1, u2, u3…….}
A is main set of Administrators like a1, a2, a3….
 A = {a1, a2, a3…….}
P is main set of participating paths like p1, p2, p3…
 P = {p1, p2, p3…….}
Identify the processes as P.
 P = {Set of processes}
 P = {P1, P2, P3……} & P1 = {e1, e2, e3, e4,e5}
Where
{e1=Find the nodes in the network}
{e2=Provide the weights to the each links in the network}
{e3=Perform Greedy forwarding algorithm}
{e4= generate blacklist for each packet and apply blacklist based
forwarding algorithm}
 {e5= Integrate system with FCFR}

Rama Gaikwad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2099-2102

www.ijcsit.com 2101

Figure 3: Data Flow Diagram

3.6 Data Independence and Data Flow Architecture
A diagram showing the course of information through the
function and the change undertakes is presented in figure 3

3.7 Platform
The project is to be developed in JAVA using eclipse IDE,
RMI and JAVAFx shall be also used.

3.8 Expected Result
LOLS cannot promise loop-free forwarding during route
convergence for this reason the use of FCFR is done. By
integrating these two eminent techniques, the network will
be sustainable for short-lived multiple failures and will be
loop free in case of convergence. The total propagation
distance of failures in case of LOLs is found less than that
of the other multiple failure handling techniques like FCP
[2].

4. CONCLUSION AND FUTURE SCOPE
In this paper, we presented an idea of LOLS integrating
with FCFR, for controlling multiple failures in IP backbone
networks and providing loop free convergence. The
fundamental notion behind LOLS is to have packets carry a
blacklist of degraded links came across the path that are to
be escaped in order to guarantee loop-free forwarding. The
significant feature of LOLS is that a packet’s blacklist is
reset to null as soon as it makes forward movement in the
direction of the destination, restricting the propagation of
failure information to limited hops. LOLS cannot promise
loop-free forwarding during route convergence for this
reason the use of FCFR is done. By integrating these two
eminent techniques, the network will be sustainable for
short-lived multiple failures and will be loop free in case of
convergence. This technique can be enhanced for the
MANET system.

REFERENCES
[1] A. Gonzalez and B. Helvik, “Analysis of failures characteristics in the

uni-net IP backbone network,” in Proc. 2011 IEEE Workshops of
International Conference on Advanced Information Networking and
Applications, pp. 198–203.

[2] Glenn Robertson and Srihari Nelakuditi “Handling Multiple Failures in
IP Networks through Localized On-Demand Link State Routing” in
IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT, VOL. 9, NO. 3, SEPTEMBER 2012

[3]Glenn Robertson, James Bedenbaugh, SrihariNelakuditi “Fast
Convergence with Fast Reroute in IP Networks” in Proc. IEEE
Infocom, Mar. 2007.

[4] U. Hengartner, S. B. Moon, R. Mortier, and C. Diot, “Detection and
analysis of routing loops in packet traces,” in IMW, Marseilles,
France, Nov. 2002.

[5]P. Francois and O. Bonaventure, “Avoiding Transient Loops during
IGP Convergence in IP Networks,” ACM Transactions on
Networking, vol. 15, no. 6, pp. 1280–1292, Dec. 2007.

[6] A. Li, X. Yang, and D. Wetherall, “SafeGuard: Safe Forwarding
during Routing Changes,” in CoNEXT, 2009.

[7]S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via
addresses,” Internet Draft (work in progress), July 2007, draft-ietf-
rtgwgipfrr- notvia-addresses-01.txt.

[8]K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S.
Shenker,and I. Stoica, “Achieving convergence-free routing using
failure-carrying packets,” in Proc. 2007 SIGCOMM, pp. 241–252.

[9] S. S. Lor, R. Landa, and M. Rio, “Packet re-cycling: eliminating
packet losses due to network failures,” in Proc. 2010 HotNets

Rama Gaikwad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2099-2102

www.ijcsit.com 2102

